Informatica e Bioinformatica: Rappresentazione dell'Informazione

Mauro Conti

Date TBD

Sommario

- Il calcolatore è in grado di elaborare differenti tipi di informazione
 - numeri, caratteri, immagini, suoni, video
- Informazione = Dati + Interpretazione
 - nel calcolatore un dato è sempre una sequenza di bit
 - per rappresentare tipi di dati diversi deve cambiare l'interpretazione (il formato dei dati)
 - in pratica dobbiamo definire
 - una procedura di codifica (per determinare quale sequenza di bit corrisponde al'oggetto da rappresentare)
 - una procedura di decodifica (per determinare a cosa corrisponde una sequenza di bit)
- Le procedure di codifica/decodifica vengono eseguite dal calcolatore, quindi devono essere pensate in modo che i dati siano facilmente manipolabili dall'elaboratore (più che facilmente comprensibili dall'uomo)

Rappresentazione di Numeri

Vediamo come vengono rappresentati i numeri seguendo la seguente scaletta:

- Numeri interi positivi
- Numeri frazionari positivi
- Numeri interi
- Numeri reali

Rappresentazione dei Numeri: Sistema Decimale

- Noi comunemente utilizziamo il sistema decimale per rappresentare i numeri: ogni cifra di un numero può avere 10 valori diversi (da 0 a 9). Poichè ogni cifra può assumere 10 valori diversi, si dice che il numero è espresso in base 10.
- Una sequenza di cifre forma un numero secondo la seguente convenzione: $374 = 3 \cdot 10^2 + 7 \cdot 10^1 + 4 \cdot 10^0$
- Volendo essere formali: ogni cifra viene moltiplicata per la base elevata a k, dove k è la posizione della cifra contando da destra a partire da 0
- Se la base è maggiore di 10 si introducono delle lettere per le cifre rimanenti: ad esempio una base utilizzata in informatica è la base 16, le sue cifre sono: 0.1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

Mauro Conti

Rappresentazione dei Numeri: Sistema Binario

- Come abbiamo accennato, il calcolatore utilizza il bit per rappresentare l'informazione. Il bit può assumere 2 valori: 0 o 1. In questo caso si dice che un numero è espresso in base 2 (oppure in binario)
- Per determinare il valore di un numero binario positivo, si utilizza lo stesso algoritmo della slide precedente dove però la base è 2: "ogni cifra viene moltiplicata per la base elevata a k, dove k è la posizione della cifra contando da destra a partire da 0"

$$(1101)_2 = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 8 + 4 + 1 = 13$$

• la cifra più a sinistra è detta la più significativa, quella più a destra la meno significativa (sono i termini che contribuiscono più e meno alla somma 8+4+1).

Numeri Binari Positivi

- Il numero di configurazioni diverse di n bit è 2ⁿ, per cui si riescono a rappresentare 2ⁿ numeri diversi.
- Il numero più grande rappresentabile con n bit è
 2ⁿ - 1 (perchè si inizia a contare da 0). Il calcolatore non può rappresentare infiniti numeri!

binario	decimale
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Da Base 10 a base 2

- Prima di vedere l'algoritmo per passare da base 10 alla base 2, vediamo altre due operazioni applicabili a numeri in qualsiasi base
- Ishift (spostamento a sinistra delle cifre). Ad esempio: Ishift $\begin{bmatrix} 3 & 7 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 7 & 4 & 0 \end{bmatrix}$
- Ishift equivale a moltiplicare il numero per la base
- rshift (spostamento a destra delle cifre). Ad esempio: rshift 3 7 4 = 37
- rshift corrisponde a dividere il numero per la base (si ottiene sia il quoziente 37 che il resto 4)

Da Base 10 a base k

Trasformazione da base 10 a base k

- 1 Dividere il numero per k
- 2 tenete traccia del resto
- se il quoziente è maggiore di 0 ripetere il passo 1 con il quoziente
- scrivere i resti nell'ordine inverso rispetto al quale sono stati ottenuti

Esempio: trasformiamo il numero 43

in base 2:

<u>in base 2:</u>		
numero	quoziente	resto
43/2	21	1
21/2	10	1
10/2	5	0
5/2	2	1
2/2	1	0
1/2	0	1

leggendo i resti dal basso all'alto (al contrario di come si sono ottenuti) si ricava 101011 (ritrasformatelo in base 10 per verificare). Quindi $(43)_{10} = (101011)_2$

Da Base 10 a base k: Esempio

L'algoritmo funziona per qualsiasi base k di destinazione:

Esempio: $(124)_{10} = (??)_2$:

numero	quoziente	resto
124/2	62	0
62/2	31	0
31/2	15	1
15/2	7	1
7/2	3	1
3/2	1	1
1/2	0	1

Verifichiamo il risultato:

$$(1111100)_2 = 1 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0 = 64 + 32 + 16 + 8 + 4 = 124$$

Esempio: $(124)_{10} = (??)_5$:

I	()10 (/3
numero	quoziente	resto
124/5	24	4
24/5	4	4
4/5	0	4

Verifichiamo il risultato:

$$(444)_5 = 4 \cdot 5^2 + 4 \cdot 5^1 + 4 \cdot 5^0 =$$

= $4 \cdot 25 + 4 \cdot 5 + 4 = 124$

Rappresentazione di Numeri

- Numeri interi positivi
- Numeri frazionari positivi
- Numeri interi
- Numeri reali

Numeri reali positivi

 Abbiamo visto come decodificare un numero intero positivo da una base k:

$$(1101)_2 = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 8 + 4 + 1 = (13)_{10}$$

- E se il numero avesse cifre dopo la virgola?
- Si procede ancora come facciamo per la base 10:

•
$$3.27 = 3 \cdot 10^0 + 2 \cdot 10^{-1} + 7 \cdot 10^{-2}$$

•
$$(0.011)_2 = 0 \cdot 2^0 + 0 \cdot 2^{-1} + 1 \cdot 2^{-2} + 1 \cdot 2^{-3} = \frac{1}{2^2} + \frac{1}{2^3} = 0.25 + 0.125 = 0.375$$

• Quindi $(1101.011)_2 = (13.375)_{10}$

Codifica in binario di numeri reali positivi

Algoritmo:

- Si moltiplica il numero per 2
- La parte intera del numero è il prossimo valore nella nuova base
- Si ripete il punto 1 con la parte decimale del numero fincheè
 - tale parte decimale non
 è 0
 - nei casi in cui non si arriva mai a 0, ci si ferma quando si sono utilizzati tutti i bit a disposizione per rappresentare il numero.

Esempio 1: $(0.21875)_{10} = (??)_2$:

Lacinple 1: (0:21013)10	$-(\cdot\cdot)_{2}$	<u> </u>
numero	parte	parte
	intera	decimale
$0.21875 \cdot 2 = 0.4375$	0	0.4375
$0.4375 \cdot 2 = 0.875$	0	0.875
$0.875 \cdot 2 = 1.75$	1	0.75
$0.75 \cdot 2 = 1.5$	1	0.5
$0.5 \cdot 2 = 1.0$	1	0
(0.21975) = (0.00111)	١.	

 $(0.21875)_{10} = (0.00111)_2.$

Esempio 2: $(0.9)_{10} = (??)_2$:

<u> </u>	10 ()2.	
numero	parte intera	parte dec.
$0.90 \cdot 2 = 1.80$	1	0.80
$0.80 \cdot 2 = 1.60$	1	0.60
$0.60 \cdot 2 = 1.20$	1	0.20
$0.20 \cdot 2 = 0.40$	0	0.40
$0.40 \cdot 2 = 0.80$	0	0.80
$(0.9)_{10} = (0.1110011100)_2$:		

Rappresentazione di numeri all'interno del calcolatore

Rappresentazione di Numeri

- Numeri interi positivi
- Numeri frazionari positivi
- Numeri interi
- Numeri reali

Numeri Interi Positivi

- I numeri interi positivi sono rappresentati all'interno dell'elaboratore utilizzando un multiplo del byte (generalmente 4 o 8 byte)
- Le funzioni di codifica/decodifica sono quelle che abbiamo visto nelle slide precedenti
- Se l'intero si rappresenta con un numero di cifre minore, vengono aggiunti zeri nelle cifre più significative
 - Esempio: su un byte $(12)_{10} = (00001100)_2$

Interi con segno

Rappresentazione in Modulo e Segno

- Il bit più significativo rappresenta il segno:
 - $\bullet \ 0 = {\sf numero \ positivo}, \ 1 = {\sf numero \ negativo}$
- se si utilizzano n bit, si riescono a rappresentare tutti i numeri x. $-2^{n-1}-1 \le x \le 2^{n-1}-1$.
 - Ad esempio con 4 bit si rappresentano i numeri da -7 a 7.

0000	0	1000	0
0001	1	1001	-1
0010	2	1010	-2
0011	3	1011	-3
0100	4	1100	-4
0101	5	1101	-5
0110	6	1110	-6
0111	7	1111	-7

Modulo e Segno

La rappresentazione in modulo e segno è facile da calcolare per l'uomo, ma

- ha 2 rappresentazioni per lo 0 (spreco!)
- il metodo di somma che abbiamo visto non è utilizzabile:

•
$$1001 + 0001 = 1010$$
 ovvero $-1 + 1 = -2!$

0000	0	1000	0
0001	1	1001	-1
0010	2	1010	-2
0011	3	1011	-3
0100	4	1100	-4
0101	5	1101	-5
0110	6	1110	-6
0111	7	1111	-7

Complemento a 2 con n bit a disposizione

- I numeri positivi sono rappresentati in modo "standard" (come nella notazione modulo e segno), utilizzando n bit
 - Esempio: n = 4; $(3)_{10} = (0011)$
- I numeri negativi sono rappresentati "in complemento a 2", ovvero si somma 2ⁿ al numero e poi rappresenta in modo "standard"
- Esempio: n = 4; $(-3)_{10} \rightarrow 2^4 3 = 16 3 = (13)_{10} = (1101)$

Complemento a 2 con n bit a disposizione

- Il bit più significativo indica ancora il segno (0=positivo, 1=negativo)
- I numeri x rappresentabili con n bit sono nell'intervallo $-2^{n-1} \le x \le 2^{n-1} 1$, rispetto alla rappresentazione modulo e segno è cambiata la disposizione dei negativi e c'è un numero negativo in più
- 0 è considerato positivo: n = 4; $(0)_{10} = (0000)_2$
 - in realtà non è una scelta obbligata, perchè se fosse negativo non sarebbe rappresentabile (provate!)

0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

Complemento a 2

Ho a disposizione n bit per rappresentare un numero decimale x in complemento a 2 (supponiamo che il risultato della codifica sia y)

- Controllo se il numero è rappresentabile con n bit ovvero se $-2^{n-1} \le x \le 2^{n-1} 1$ (per y basta che guardi da quanti bit è formato)
- Se x e y sono positivi e rappresentabili con n bit:
 - sia la codifica (da x a y) che la decodifica (da y a x) si effettuano in modo "standard" (con le divisioni per 2 oppure moltiplicando le cifre y per potenze di 2).
 - Esempio 1 (codifica): n = 4; (6)₁₀ è rappresentabile perchè $-2^3 \le 6 \le 2^3 1$ e (6)₁₀ = (0110)₂
 - Esempio 2 (codifica): $(18)_{10}$ non è rappresentabile perchè $2^3 1 < 18$.
 - Esempio 3 (decodifica): $(0101)_2 = 2^2 + 2^0 = 5$

Complemento a 2

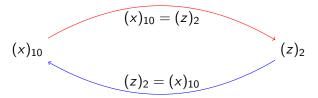
Ho a disposizione n bit per rappresentare un numero decimale x in complemento a 2 (supponiamo che il risultato della codifica sia y)

- Controllo se il numero è rappresentabile con n bit ovvero se $-2^{n-1} \le x \le 2^{n-1} 1$ (per y basta che guardi da quanti bit è formato)
- se x e y sono negativi e rappresentabili con n bit:
 - la codifica (da x a y) si effettua applicando la codifica per i numeri positivi a $2^n + x$
 - Esempio 1: n = 4; $(-4)_{10}$ è rappresentabile, calcolo allora $(-4 + 16)_{10} = (12)_{10} = (1100)_2$
 - Esempio 2: n = 4; $(-11)_{10} < -2^3 1$, quindi non è rappresentabile in complemento a 2
 - la decodifica (da y a x) si effettua applicando la decodifica per i numeri positivi e poi sottraendo 2ⁿ al risultato
 - Esempio 2: n = 4; $(1001)_2$, decodifico $(1001)_2 = 9$ e poi calcolo $9 2^4 = 9 16 = -7$

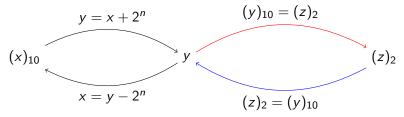
Complemento a 2: codifica/decodifica graficamente

Legenda: n bit, z rappresentazione in complemento a 2 di x (rappresentabile), frecce rosse codifica, blu decodifica.

• Se il numero è positivo:



Se il numero è negativo:



Esempi

Supponendo di avere a disposizione 4 bit, determinare la rappresentazione in complemento a 2 di -6:

• $-8 \le -6 \le 7$ per cui è rappresentabile. Calcoliamo $(16 - 6)_{10} = (??)_2$

	- ()10	() 2
numero	quoziente	resto
10/2	5	0
5/2	2	1
2/2	1	0
1/2	0	1

La rappresentazione in complemento a 2 di -6 è 1010.

Esempi

- Quale numero corrisponde al seguente numero in complemento a 2: 010011?
 - Il numero è definito su 6 bit, per cui assumiamo n = 6 (il numero è ovviamente rappresentabile perchè abbiamo già la sua rappresentazione).
 Il numero è positivo per cui possiamo decodificarlo direttamente
 010011 = 2⁴ + 2¹ + 2⁰ = 16 + 2 + 1 = 19
- Quale numero corrisponde al seguente numero in complemento a 2 definito su 5 bit: 10011?
 - Il numero è negativo. Intanto decodifichiamolo $10011=2^4+2^1+2^0=16+2+1=19$ Poichè il numero è negativo dobbiamo sottrarre al risultato della decodifica 2^5 : 19-32=-13 Il numero 10011 in complemento a 2 su 5 bit corrisponde a -13.

Complemento a 2: Considerazioni

La rappresentazione in complemento a 2 è più complicata di quella in modulo e segno ma

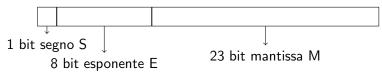
- ha una sola rappresentazione per lo 0
- il metodo di somma che abbiamo visto è utilizzabile:
 - 1001 + 0001 = 1010 ovvero -7 + 1 = -6!
- in generale le operazioni aritmetiche risultano più naturali da eseguire al calcolatore

Rappresentazione di Numeri

- Numeri interi positivi
- Numeri frazionari positivi
- Numeri interi
- Numeri reali

Numeri Reali

- I numeri reali utilizzano la rappresentazione in virgola mobile
- Si basa sulla notazione scientifica $1.40 \cdot 10^2 = 140$ (notate che c'è solo una cifra intera, ovvero la notazione è normalizzata)
- Lo standard IEEE 754 prevede 3 tipi di numeri in virgola mobile:
 - singola precisione (32 bit)
 - doppia precisione (64 bit)
 - quadrupla precisione (128 bit)
- i numeri a singola precisione hanno il seguente formato:



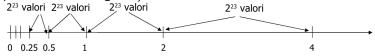
• tralasciando le sequenze E=00000000, E=11111111 che sono casi particolari, il formato è $(-1)^S \cdot 1.M \cdot 2^{E-127}$

Numeri Reali

- II formato IEEE 754 è $(-1)^{S} \cdot 1.M \cdot 2^{E-127}$
 - $(-1)^S$ indica il segno $(-1)^0 = +1$, $(-1)^1 = -1$
 - 1.*M*, la mantissa indica il numero vero e proprio in forma normalizzata ()
 - 2^{E-127} indica dove mettere la virgola (moltiplicare/dividere per 2 un numero binario significare spostare a destra/sinistra la virgola di una posizione)
 - l'esponente E è un intero positivo (tra 0 e 255), sottraendogli 127 si ottengono metà esponenti positivi e metà negativi
 - Si utilizza questa strana rappresentazione dell'esponente perchè rende più semplice il confronto tra numeri reali: a parte il segno è sufficiente un confronto lessicografico (bit a bit) per stabilire il maggiore
 - 0 01111000 10010100010110110110110
 - 0 01111101 01010000100101101011110
 - il primo numero è minore del secondo

Numeri Reali a Singola Precisione

- Il numero più grande rappresentabile è (circa) 6.81 · 10³⁸
- Il numero positivo più piccolo rappresentabile è (circa) $1.4 \cdot 10^{-45}$
- in totale si riescono a rappresentare 2³² numeri distinti (metà positivi, metà negativi)



- I numeri rappresentabili non sono distribuiti uniformemente
 - all'aumentare dell'esponente aumenta la dimensione dell'intervallo, però ogni intervallo contiene 2²³ numeri, per cui la precisione di un numero reale è maggiore più si è vicini allo zero

Numeri Reali: esempio di rappresentazione

Fornire la rappresentazione in virgola mobile normalizzata del valore 10.543 avendo a disposizione 8 bit per l'esponente e 8 per la mantissa.

• Calcolare la rappresentazione binaria di $(10)_{10} = (1010)_2$:

numero	quoziente	resto
10/2	5	0
5/2	2	1
2/2	1	0
1/2	0	1

② Calcolare la rappresentazione binaria di $(0.543)_{10} = 10001011$

numero	parte intera	parte decimale		
$0.543 \cdot 2 = 1.086$	1	0.086		
$0.086 \cdot 2 = 0.172$	0	0.172		
$0.172 \cdot 2 = 0.344$	0	0.344		
$0.344 \cdot 2 = 0.688$	0	0.688		
$0.688 \cdot 2 = 1.376$	1	0.376		

Numeri Reali: esempio di rappresentazione

Fornire la rappresentazione in virgola mobile normalizzata del valore 10.543 avendo a disposizione 8 bit per l'esponente e 8 per la mantissa.

- Calcolare la rappresentazione binaria di $(10)_{10} = (1010)_2$:
- ② Calcolare la rappresentazione binaria di $(0.543)_{10} = (10001011)_2$
- Normalizzare il numero ottenuto: $1.01010001011 \cdot 2^3 = 1010.10001011$
- Rappresentare l'esponente: 3 + 127 (127 viene sommanto all'esponente perchè stiamo codificando il numero, E 127 di qualche slide precedente fa riferimento alla fase di decodifica. $(130)_{10} = (10000010)_2$
- 10000010 01010001 Infine la rappresentazione del numero è 0 10000010 01010001

Numeri Reali: Considerazioni

- Indipendentemente dalla codifica scelta, è probabile che un numero reale non ammetta una rappresentazione finita, quindi dovrà essere codificato in maniera approssimata
- La precisione della rappresentazione di un numero reale è una misura di quanto essa corrisponda al numero che deve essere rappresentato
- La maggior parte degli elaboratori non possiede circuiti in grado di eseguire direttamente tutte le operazioni:
 - Ad esempio la moltiplicazione si realizza per mezzo di una successione di addizioni e di shift
 - Le operazioni più semplici sono eseguite direttamente da appositi circuiti (in hardware); le operazioni più complesse sono spesso realizzate mediante l'esecuzione di successioni di operazioni più semplici, sotto il controllo di piccoli programmi

Rappresentazione di Caratteri

- Oltre ai numeri, molte applicazioni elaborano caratteri (simboli)
- Per poter scambiare dati in modo corretto, è necessario definire una codifica da carattere a numero standard
- Lo standard di codifica pi diffuso è il codice ASCII, per American Standard Code for Information Interchange
- Definisce una tabella di corrispondenza fra ciascun simbolo (carattere minuscolo, maiuscolo, cifre) e un codice a 7 bit (128 caratteri)

Codifica ASCII

Tabella ASCII

	0	1	2	3	4	5	6	7
0	NUL	DLE	space	0	@	Р	`	р
1	SOH	DC1 XON	l l	1	Α	Q	а	q
2	STX	DC2		2	В	R	b	r
3	ETX	DC3 XOFF	#	3	С	S	С	S
4	EOT	DC4	\$	4	D	Т	d	t
5	ENQ	NAK	%	5	E	U	е	u
6	ACK	SYN	8.	6	F	V	f	٧
7	BEL	ETB	'	7	G	W	g	W
8	BS	CAN	(8	Н	×	h	×
9	HT	EM)	9	- 1	Υ	i	У
Α	LF	SUB	*	:	J	Ζ	j	Z
В	VΤ	ESC	+	:	K	[k	{
С	FF	FS		<	L	1	- 1	I
D	CR	GS	-	=	M]	m	}
E	so	RS		>	N	Λ	n	~
F	SI	US	/	?	0	_	0	del

Estensioni

- La tabella ASCII (datata 1961) è limitata: ad esempio non permette di rappresentare caratteri arabi o asiatici
- La tabella ASCII estesa utilizza 8 bit e permette di rappresentare caratteri come à, è, . . .
- La tabella ASCII non è standard. Ad esempio ISO 8859-1 contiene i caratteri latini di maggior uso (coincide con ASCII per i primi 127 valori)
- UNICODE (UTF-8 e UTF-16): standard proposto a 8 e 16 bit (65.536 caratteri)
 - UTF-8 è usato per le e-mail