
UNIVERSITÀ DI PADOVA

< 2014 April >

Comparison Operators

Remember: “=” is used for assignment.

Python Meaning

< Less than

<= Less than or Equal

 == Equal to

>= Greater than or Equal

> Greater than

!= Not equal

• Decision making structures require that the programmer specifies
one or more conditions to be evaluated or tested by the program,
along with a statement or statements to be executed if the condition is
determined to be true, and optionally, other statements to be executed
if the condition is determined to be false

DECISION MAKING

Indentation

• Leading whitespace at the beginning of a logical line,
which in turn is used to determine the grouping of
statements.

• Increase indent: After an if statement or for statement (after :)

• Maintain indent: Which lines are affected by the if/for

• Reduce indent : To back to the level of the if statement or for
statement in order to indicate the end of the block

• Blank lines and comments are ignored. They do not affect
indentation

Warning

• Python cares a lot about how far line is indented.
If you mix tabs and spaces, you may get
“indentation errors” even if, everything looks
fine

x = 5

if x > 2 :

 print 'Bigger than 2'

 print 'Still bigger'

print 'Done with 2'

for i in range(5) :

 print i

 if i > 2 :

 print 'Bigger than 2'

 print 'Done with i', i

x = 5

if x > 2 :

comments

 print 'Bigger than 2'

 # don’t matter

 print 'Still bigger'

but can confuse you

print 'Done with 2'

 # if you don’t line

 # them up

Indentation

Conditional Steps

Output:

Smaller

Finish

Program:

x = 5

if x < 10:

 print 'Smaller’

if x > 20:

 print 'Bigger'

print 'Finish'

x = 5

X < 10 ?

print 'Smaller'

X > 20 ?

print 'Bigger'

print 'Finis'

Yes

Yes

DECISION MAKING

Comparison Operators

x = 5

if x == 5 :

 print 'Equals 5'

if x > 4 :

 print 'Greater than 4’

if x >= 5 :

 print 'Greater than or Equal 5'

if x < 6 : print 'Less than 6'

if x <= 5 :

 print 'Less than or Equal 5’

if x != 6 :

 print 'Not equal 6'

Equals 5

Greater than 4

Greater than or Equal 5

Less than 6

Less than or Equal 5

Not equal 6

One-Way Decisions

x = 5

print 'Before 5’

if x == 5 :

 print 'Is 5’

 print ' Still 5’

 print 'Third 5’

print 'Afterwards 5’

print 'Before 6’

if x == 6 :

 print 'Is 6’

 print 'Is Still 6’

 print 'Third 6’

print 'Afterwards 6'

Before 5

Is 5

Still 5

Third 5

Afterwards 5

Before 6

Afterwards 6

X == 5 ?
Yes

print 'Still 5'

print 'Third 5'

No print 'Is 5'

x > 1

print 'More than one'

x < 100

print 'Less than 100'

print 'All Done'

yes

yes

no

no
x = 42

if x > 1 :

 print 'More than one'

 if x < 100 :

 print 'Less than 100'

print 'All done'

Nested Decisions

x > 1

print 'More than one'

x < 100

print 'Less than 100'

print 'All Done'

yes

yes

no

no x = 42

if x > 1 :

 print 'More than one'

 if x < 100 :

 print 'Less than 100'

print 'All done'

Nested Decisions

x > 1

print 'More than one'

x < 100

print 'Less than 100'

print 'All Done'

yes

yes

no

no
x = 42

if x > 1 :

 print 'More than one'

 if x < 100 :

 print 'Less than 100'

print 'All done'

Nested Decisions

Two Way Decisions

• Sometimes we want to do one thing if a logical expression is
true and something else if the expression is false

x > 2

print 'Bigger'

yes no

X = 4

print 'Not bigger'

print 'All Done'

x = 4

if x > 2 :

 print 'Bigger'

else :

 print 'Smaller'

print 'All done'

x > 2

print 'Bigger'

yes no

X = 4

print 'Smaller'

print 'All Done'

Two Way Decisions

Two-way using else :

x = 4

if x > 2 :

 print 'Bigger'

else :

 print 'Smaller'

print 'All done'

x > 2

print 'Bigger'

yes no

X = 4

print 'Smaller'

print 'All Done'

Multi-way

if x < 2 :

 print 'Small'

elif x < 10 :

 print 'Medium'

else :

 print 'LARGE'

print 'All done'

x < 2 print 'Small'

yes

no

print 'All Done'

x<10 print 'Medium'

yes

print 'LARGE'

no

x = 0

if x < 2 :

 print 'Small'

elif x < 10 :

 print 'Medium'

else :

 print 'LARGE'

print 'All done'

x < 2 print 'Small'

yes

no

X = 0

print 'All Done'

x<10 print 'Medium'

yes

print 'LARGE'

no

Multi-way

x = 5

if x < 2 :

 print 'Small'

elif x < 10 :

 print 'Medium'

else :

 print 'LARGE'

print 'All done'

x < 2 print 'Small'

yes

no

X = 5

print 'All Done'

x<10 print 'Medium'

yes

print 'LARGE'

no

Multi-way

x = 20

if x < 2 :

 print 'Small'

elif x < 10 :

 print 'Medium'

else :

 print 'LARGE'

print 'All done'

x < 2 print 'Small'

yes

no

X = 20

print 'All Done'

x<10 print 'Medium'

yes

print 'LARGE'

no

Multi-way

No Else

x = 5

if x < 2 :

 print 'Small'

elif x < 10 :

 print 'Medium'

print 'All done'

if x < 2 :

 print 'Small'

elif x < 10 :

 print 'Medium'

elif x < 20 :

 print 'Big'

elif x< 40 :

 print 'Large'

elif x < 100:

 print 'Huge'

else :

 print ‘WOW'

Multi-way

While Loop

• A while loop statement in Python programming language
repeatedly executes a target statement as long as a given condition
is true.

• A loop becomes infinite loop if a

condition never becomes false

• You would need to use CTRL+C to

come out of the program.

• Python supports to have an else statement associated
with a loop statement.

• If the else statement is used with a while loop, the else
statement is executed when the condition becomes false.

• If the else statement is used with a for loop, the else statement
is executed when the loop has exhausted iterating the list.

While Loop

Repeated Steps
Output:

5

4

3

2

1

END

0

Program:

n = 5

while n > 0 :

 print n

 n = n – 1

print ‘END’

print n

n > 0 ?

n = n -1

• Loops (repeated steps) have iteration variables
that change each time through a loop.

No

Print ‘ END ’

Yes

n = 5

print n

While Loop

While Loop

n = 5

while n > 0 :

 print ‘I’

 print ‘Love'

 print ‘Python‘

print ‘END’

n > 0 ?
No

print ‘ END'

Yes

n = 5

print ‘I’

print ‘Love'

What is wrong with this loop?

print ‘Python'

What does this loop do?

n = 0

while n > 0 :

 print ‘I’

 print ‘Love'

 print ‘Python‘

print ‘ END’

n > 0 ?

print ‘ END'

Yes

n = 5

print ‘I’

print ‘Love'

print ‘Python'

No

Another Loop

Breaking Out of a Loop

• The break statement ends the current loop and jumps
to the statement immediately following the loop

while True:

 line = raw_input('> ')

 if line == 'done' :

 break

 print line

print ‘Out of loop'

> hello there

hello there

> finished

finished

> done

Out of loop

Breaking Out of a Loop

• The break statement ends the current loop and jumps
to the statement immediately following the loop

while True:

 line = raw_input('> ')

 if line == 'done' :

 break

 print line

print ‘Out of loop'

> hello there

hello there

> finished

finished

> done

Out of loop

Finishing an Iteration with continue

• The continue statement ends the current iteration
and jumps to the top of the loop and starts the next
iteration

while True:

 line = raw_input('> ')

 if line[0] == '#' :

 continue

 if line == 'done' :

 break

 print line

print ‘Out of loop'

> hello there

hello there

> # don't print this

>

> done

Out of loop

Finishing an Iteration with continue

• The continue statement ends the current iteration
and jumps to the top of the loop and starts the next
iteration

while True:

 line = raw_input('> ')

 if line[0] == '#' :

 continue

 if line == 'done' :

 break

 print line

print ‘Out of loop!'

> hello there

hello there

> # don't print this

>

> done

Out of loop

for loop

• The for loop in Python has the ability to iterate over the items of
any sequence, such as a list or a string.

for i in [5, 4, 3, 2, 1] :

 print i

print ‘END'

Iteration variable

• Python supports to have an else statement associated
with a loop statement.

• If the else statement is used with a for loop, the else statement
is executed when the loop has exhausted iterating the list.

• If the else statement is used with a while loop, the else
statement is executed when the condition becomes false.

for loop

A Simple Definite Loop

for i in [5, 4, 3, 2, 1] :

 print i

print ‘END'

5

4

3

2

1

END

Iteration variable
Five-element sequence

A Definite Loop with Strings

friends = [‘Hossein', ‘Mauro', ‘Moreno']

for friend in friends :

 print 'Happy New Year:', friend

print 'Done!'

Happy New Year: Hossein

Happy New Year: Mauro

Happy New Year: Moreno

Done!

A Simple Definite Loop

for i in [5, 4, 3, 2, 1] :

 print i

print ‘END'

5

4

3

2

1

END

Done?
Yes

print ‘END’

print i

No

Move i ahead

• Definite loops (for loops) have explicit iteration
variables that change each time through a loop.
These iteration variables move through the
sequence or set.

Looking at In...

• The block (body) of code is
executed once for each value
in the sequence

• The iteration variable moves
through all of the values in
the sequence for i in [5, 4, 3, 2, 1] :

 print i

Iteration variable
Five-element sequence

print i

i = 5

print i

i = 4

print i

i = 3

print i

i = 2

print i

i = 1

for i in [5, 4, 3, 2, 1] :

 print i

Done?
Yes

print ‘END’

print i

No

Move i ahead

Looking at In...

Looping through a Set

print 'Before'

for thing in [9, 41, 12, 3, 74, 15] :

 print thing

print 'After'

Before

9

41

12

3

74

15

After

Look for something or do

something to each entry

separately, updating a

variable.

for thing in data:

Look at the variables.

Counting in a Loop

z = 0

print 'Before', z

for thing in [9, 41, 12, 3, 74, 15] :

 z = z + 1

 print z, thing

print 'After', z

Before 0

1 9

2 41

3 12

4 3

5 74

6 15

After 6

• To count how many times we execute a loop we introduce a counter
variable that starts at 0 and we add one to it each time through the
loop.

Summing in a Loop

z = 0

print 'Before', z

for thing in [9, 41, 12, 3, 74, 15] :

 z = z + thing

 print z, thing

print 'After', z

Before 0

9 9

50 41

62 12

65 3

139 74

154 15

After 154

• To add up a value we encounter in a loop, we introduce a sum variable
that starts at 0 and we add the value to the sum each time through the
loop.

Finding the Average in a Loop

count = 0

sum = 0

print 'Before', count, sum

for value in [9, 41, 12, 3, 74, 15] :

 count = count + 1

 sum = sum + value

 print count, sum, value

print 'After', count, sum, sum / count

Before 0 0

1 9 9

2 50 41

3 62 12

4 65 3

5 139 74

6 154 15

After 6 154 25

• An average just combines the counting and sum patterns
and divides when the loop is done.

Filtering in a Loop

print 'Before’

for value in [9, 41, 12, 3, 74, 15] :

 if value > 20:

 print 'Large number', value

print 'After'

Before

Large number 41

Large number 74

After

• We use an if statement in the loop to catch / filter the values
we are looking for.

Search Using a Boolean Variable

found = False

print 'Before', found

for value in [9, 41, 12, 3, 74, 15] :

 if value == 3 :

 found = True

 print found, value

print 'After', found

Before False

False 9

False 41

False 12

True 3

True 74

True 15

After True

• If we just want to search and know if a value was found - we use a variable
that starts at False and is set to True as soon as we find what we are looking
for.

Finding the smallest value

smallest = None

print 'Before’

for value in [9, 41, 12, 3, 74, 15] :

 if smallest is None :

 smallest = value

 elif value < smallest :

 smallest = value

 print smallest, value

print 'After', smallest

Before

9 9

9 41

9 12

3 3

3 74

3 15

After 3

• We still have a variable that is the smallest so far. The first time through
the loop smallest is None so we take the first value to be the smallest.

The "is" and "is not" Operators

• Python has an "is" operator
that can be used in logical
expressions

• Similar to ==, but stronger than

• 'is not' also is a logical operator

smallest = None

print 'Before’

for value in [3, 41, 12, 9, 74, 15] :

 if smallest is None :

 smallest = value

 elif value < smallest :

 smallest = value

 print smallest, value

print 'After', smallest

REFERENCES

1. http://www.tutorialspoint.com/index.htm

2. http://docs.python.org/lib/string-methods.html

3. http://www.pythonlearn.com/

http://www.tutorialspoint.com/index.htm
http://docs.python.org/lib/string-methods.html
http://docs.python.org/lib/string-methods.html
http://docs.python.org/lib/string-methods.html
http://www.pythonlearn.com/

• Website:
http://www.math.unipd.it/~hossein/fereidooni.htm

• E-mail: hossein@math.unipd.it

• Skype: fereidooni1983

Contact

