
UNIVERSITÀ DI PADOVA

< 2014 March >

A List is a kind of Collection

• A collection allows us to put many values in a single
“variable”

• A collection is nice because we can carry all many values
around in one convenient package.

country = [‘USA', ‘Italy', ‘Iran']

greeting = [‘Hello', ‘Ciao', ‘Salam']

What is not a “Collection”

• Most of our variables have one value in them.

• when we put a new value in the variable, the old value is
over written

>>> x = 2

>>> x = 4

>>> print x

4

List Constants

• List constants are surrounded
by square brackets and the
elements in the list are
separated by commas.

• A list element can be any
Python object - even another
list

• A list can be empty

>>> print [1, 24, 76]

[1, 24, 76]

>>> print ['red', 'yellow', 'blue']

['red', 'yellow', 'blue']

>>> print ['red', 24, 98.6]

['red', 24, 98.6]

>>> print [1, [5, 6], 7]

[1, [5, 6], 7]

>>> print []

[]

Looking Inside Lists

• Just like strings, we can get at any single element in a list
using an index specified in square brackets

0

Joseph

>>> friends = ['Joseph', 'Glenn', 'Sally']

>>> print friends[1]

Glenn

1

Glenn

2

Sally

Lists are Mutable

• Strings are "immutable" -
we cannot change the
contents of a string - we
must make a new string
to make any change

• Lists are "mutable" - we
can change an element of
a list using the index
operator

>>> fruit = 'Banana’

>>> fruit[0] = 'b’

Traceback

TypeError: 'str' object does not

support item assignment

>>> x = fruit.lower()

>>> print x

banana

>>> lotto = [2, 14, 26, 41, 63]

>>> print lotto

>>>[2, 14, 26, 41, 63]

>>> lotto[2] = 28

>>> print lotto

[2, 14, 28, 41, 63]

How Long is a List?

• The len() function takes a list
as a parameter and returns
the number of elements in the
list

• Actually len() tells us the
number of elements of any
set or sequence (i.e. such as
a string...)

>>> greet = 'Hello Bob’

>>> print len(greet)

9

>>> x = [1, 2, 'joe', 99]

>>> print len(x)

4

>>>

Using the range function

>>> print range(4)

[0, 1, 2, 3]

>>> friends = ['Joseph', 'Glenn', 'Sally']

>>> print len(friends)

3

>>> print range(len(friends))

[0, 1, 2]

>>>

• The range function returns a list of

numbers that range from zero to

one less than the parameter

Concatenating lists using +

• We can create a new list by
adding two existing lists
together

>>> a = [1, 2, 3]

>>> b = [4, 5, 6]

>>> c = a + b

>>> print c

[1, 2, 3, 4, 5, 6]

>>> print a

[1, 2, 3]

Lists can be sliced using :

>>> t = [9, 41, 12, 3, 74, 15]

>>> t[1:3]

[41,12]

>>> t[:4]

[9, 41, 12, 3]

>>> t[3:]

[3, 74, 15]

>>> t[:]

[9, 41, 12, 3, 74, 15]

• Remember: Just like in strings, the

second number is "up to but not

including"

Building a list

• We can create an
empty list and then add
elements using the
append method

• The list stays in order
and new elements are
added at the end of the
list

>>> stuff = list()

>>> stuff.append('book')

>>> stuff.append(99)

>>> print stuff

['book', 99]

>>> stuff.append('cookie')

>>> print stuff

['book', 99, 'cookie']

Is Something in a List?

• Python provides two
operators that let you
check if an item is in a
list

• These are logical
operators that return
True or False

• They do not modify the
list

>>> some = [1, 9, 21, 10, 16]

>>> 9 in some

True

>>> 15 in some

False

>>> 20 not in some

True

>>>

A List is an Ordered Sequence

• A list can hold many items
and keeps those items in
the order until we do
something to change the
order

• A list can be sorted. The
sort method means "sort
yourself"

>>> friends = ['Joseph', 'Glenn', 'Sally']

>>> friends.sort()

>>> print friends

['Glenn', 'Joseph', 'Sally']

>>> print friends[1]

Joseph

>>>

Built in Functions and Lists

• There are a number of
functions built into
Python that take lists
as parameters

>>> nums = [3, 41, 12, 9, 74, 15]

>>> print len(nums)

6

>>> print max(nums)

74

>>> print min(nums)

3

>>> print sum(nums)

154

>>> print sum(nums)/len(nums)

25

Best Friends: Strings and Lists

>>> abc = 'With three words’

>>> stuff = abc.split()

>>> print stuff

['With', 'three', 'words']

>>> print len(stuff)

3

>>> print stuff[0]

With

• Split breaks a string into parts and produces a list of strings.

>>> line = 'A lot of spaces’

>>> etc = line.split()

>>> print etc['A', 'lot', 'of', 'spaces']

>>> line = 'first;second;third’

>>> thing = line.split()

>>> print thing

['first;second;third']

>>> print len(thing)

1

>>> thing = line.split(';')

>>> print thing

['first', 'second', 'third']

>>> print len(thing)

3

• When you do not specify a delimiter, multiple

spaces are treated like “one” delimiter.

• You can specify what delimiter character to

use in the splitting.

Best Friends: Strings and Lists

The Double Split Pattern

• Sometimes we split a line and then grab one of the pieces of
the line and split that piece again

>>> line="from hossein@math.unipd.it"

>>> mylist=line.split()

>>> print mylist

['from', 'hossein@math.unipd.it']

>>> myemail=mylist[1]

>>> print myemail

hossein@math.unipd.it

>>> myname=myemail.split('@')

>>> print myname

['hossein', 'math.unipd.it']

>>> print myname[0]

hossein

Tuples

• Tuples are another kind of sequence that function much
like a list

• They have elements which are indexed starting at 0

>>> x = ('Glenn', 'Sally', 'Joseph')

>>> print x[2]

Joseph

>>> y = (1, 9, 2)

>>> print y

(1, 9, 2)

>>> print max(y)

9

..but.. Tuples are "immutable"

• Unlike a list, once you create a tuple, you cannot alter its
contents - similar to a string

>>> x = [9, 8, 7]

>>> x[2] = 6

>>> print x

[9, 8, 6]

>>>

>>> y = 'ABC’

>>> y[2] = 'D’

Traceback:'str' object

does

not support item

Assignment

>>>

>>> z = (5, 4, 3)

>>> z[2] = 0

Traceback:'tuple' object

does

not support item

Assignment

>>>

Things not to do with tuples

>>> x = (3, 2, 1)

>>> x.sort()

Traceback:AttributeError: 'tuple' object has no attribute 'sort’

>>> x.append(5)

Traceback:AttributeError: 'tuple' object has no attribute 'append’

>>> x.reverse()

Traceback:AttributeError: 'tuple' object has no attribute 'reverse’

>>>

Tuples and Assignment

• We can also put a tuple on the left hand side of an
assignment statement

>>> (x, y) = (4, 'fred')

>>> print y

Fred

>>> (a, b) = (99, 98)

>>> print a

99

Tuples are Comparable

• The comparison operators work with tuples and other
sequences. If the first items are equal, Python goes on
to the next element, and so on, until it finds elements
that differ.

>>> (0, 1, 2) < (5, 1, 2)

True

>>> (0, 1, 2000000) < (0, 3, 4)

True

>>> ('Jones', 'Sally') < ('Jones', 'Sam')

True

>>> ('Jones', 'Sally') > ('Adams', 'Sam')

True

The dictionary data structure

• A dictionary is mapping between a set of indices (keys) and a set
of values

• The items in a dictionary are key-value pairs

• Keys can be any Python data type
• Because keys are used for indexing, they should be immutable

• Values can be any Python data type
• Values can be mutable or immutable

5/10/09

{'one': 'uno' , 'two': 'due', 'three': 'tre'}

Creating a dictionary

>>>eng2it = dict()

>>>print eng2it

>>>eng2it['one'] = 'uno'

>>>print eng2it

>>>eng2it['two'] = 'due'

>>>print eng2it

5/10/09

Creating a dictionary

eng2it = {'one': 'uno', 'two': 'due', 'three': 'tre'}

print eng2it

• In general, the order of items in a dictionary is unpredictable

• Dictionaries are indexed by keys, not integers

5/10/09

Dictionary indexing

print eng2it['three']

print eng2it['five']

• If the index is not a key in the dictionary, Python raises an
exception

The in operator

• Note that the in operator works differently for dictionaries than

for other sequences

• For strings, lists, and tuples, x in y checks to see whether x
is an item in the sequence

• For dictionaries, x in y checks to see whether x is a key in
the dictionary

Tuples and Dictionaries

• The items() method
in dictionaries returns
a list of (key, value)
tuples

>>> d = dict()

>>> d[‘two'] = 2

>>> d[‘four'] = 4

>>> tups = d.items()

>>> print tups

[(‘two', 2), (‘four', 4)]

Keys and values

• The keys method returns a list of the keys in a dictionary

 print eng2it.keys()

• The values method returns a list of the values

 print eng2it.values()

• The items method returns a list of tuple pairs of the key-
value pairs in a dictionary

 print eng2it.items()

Sorting Lists of Tuples

• We can take advantage of the ability to sort a list of
tuples to get a sorted version of a dictionary

• First we sort the dictionary by the key using the items()
method

>>> d = {'a':10, 'b':1, 'c':22}

>>> t = d.items()

>>> t

[('a', 10), ('c', 22), ('b', 1)]

>>> t.sort()

>>> t

[('a', 10), ('b', 1), ('c', 22)]

REFERENCES

1. http://www.tutorialspoint.com/index.htm

2. http://docs.python.org/2/library/stdtypes.html

3. http://docs.python.org/lib/string-methods.html

http://www.tutorialspoint.com/index.htm
http://docs.python.org/2/library/stdtypes.html

• Website:
http://www.math.unipd.it/~hossein/fereidooni.htm

• E-mail: hossein@math.unipd.it

• Skype: fereidooni1983

Contact

