
UNIVERSITÀ DI PADOVA 

< 2014 March > 



  

  

  







 

 

 Easy-to-learn: Python has relatively few keywords, 
simple structure, and a clearly defined syntax.  

 Easy-to-read: Python code is much more clearly defined 
and visible to the eyes. 

 Easy-to-maintain 

 Interactive Mode:  Support for functional and structured 
programming methods as well as OOP. 

Very high-level dynamic data types  

 



       If you want know more Information with respect to 
installation, documentation and so forth go to: 

 

https://www.python.org/ 



What is an operator? 
   Python language supports the following types of operators: 
 

1. Arithmetic Operators 
2. Comparison Operators 
3. Assignment Operators 
4. Logical Operators 
5. Membership Operators 
6. Identity Operators 



Assume variable a holds 10 and variable b holds 20, then: 

Operator Description Example 

+ Addition - Adds values on either side of the operator a + b will give 30 

- 
Subtraction - Subtracts right hand operand from left 

hand operand 
a - b will give -10 

* 
Multiplication - Multiplies values on either side of the 

operator 
a * b will give 200 

/ 
Division - Divides left hand operand by right hand 

operand 
b / a will give 2 

% 
Modulus - Divides left hand operand by right hand 

operand and returns remainder 
b % a will give 0 

** 
Exponent - Performs exponential (power) calculation 

on operators 
a**b will give 10 to the power 20 

// 
Floor Division - The division of operands where the 

result is the quotient in which the digits after the 

decimal point are removed. 

9//2 is equal to 4 and 9.0//2.0 is equal to 4.0 

Operator Description Example 

in 
Evaluates to true if it finds a variable in the specified 

sequence and false otherwise. 

x in y, here in results in a 1 if x is a member of 

sequence y. 

not in 
Evaluates to true if it does not finds a variable in the 

specified sequence and false otherwise. 

x not in y, here not in results in a 1 if x is not a 

member of sequence y. 



• The following table lists all operators from highest precedence to 
lowest: 

Operator Description 

** Exponentiation (raise to the power) 

~ + - Complement, unary plus and minus  

* / % // Multiply, divide, modulo and floor division 

+ - Addition and subtraction 

>> << Right and left bitwise shift 

<= < > >= Comparison operators 

<> == != Equality operators 

= %= /= //= -= += *= **= Assignment operators 

in not in Membership operators 

not or and Logical operators 



DASDC 

• The operand to the left of the = operator is the name of the 
variable and the operand to the right of the = operator is the 
value stored in the variable. 

#!/usr/bin/python 

 

counter = 100          # An integer assignment 

miles   = 1000.0       # A floating point 

name    = "John"       # A string 

 

print counter 

print miles 

print name 

While running this program, this will produce the following result: 

100 

1000.0 

John 

 



1-Numbers 
2-String 
3-List 
4-Tuple 
5-Dictionary 

 

Python has five standard data types: 
 
 



• Number data types store numeric values. They are immutable data 
types which means that changing the value of a number data type 
results in a newly allocated object. 
 
 
 
 
 var1 = 1 

var2 = 10 

del var 

del var_a, var_b 

 
 

• Python supports different numerical types: 

 int / float / complex (complex numbers) 

• You can also delete the reference to a number object by using the del 
statement.  



• Strings in are identified as a contiguous set of characters in between quotation marks. 

• Subsets of strings can be taken using the slice operator ( [ ] and [ : ] )  

• The plus ( + ) sign is the string concatenation operator  

• The asterisk ( * ) is the repetition operator 

#!/usr/bin/python 

 

str = 'Hello World!' 

 

print str          # Prints complete string 

print str[0]       # Prints first character of the string 

print str[2:5]     # Prints characters starting from 3rd to 5th 

print str[2:]      # Prints string starting from 3rd character 

print str * 2      # Prints string two times 

print str + "TEST" # Prints concatenated string 

This will produce the following result: 

Hello World! 

H 

llo 

llo World! 

Hello World!Hello World! 

Hello World!TEST 



• Creating a strings is as simple as assigning a value to a 
variable. 

var1 = 'Hello World!' 

var2 = "Python Programming" 



•     Following table is a list of escape or non-printable characters that 
can be represented with backslash notation. 

\b 0x08 Backspace 

\e 0x1b Escape 

\n 0x0a Newline 

\r 0x0d Carriage return 

\s 0x20 Space 

\t 0x09 Tab 

\v 0x0b Vertical tab 

\x   Character x 

\xnn   Hexadecimal notation, where n is in the range 0.9, a.f, or A.F 

 



•       Assume string variable a holds 'Hello' and variable b holds 
'Python', then: 

Operator Description Example 

+ 
Concatenation - Adds values on 
either side of the operator 

a + b will give HelloPython 

* 
Repetition - Creates new strings, 
concatenating multiple copies of the 
same string 

a*2 will give -HelloHello 

[] 
Slice - Gives the character from the 
given index 

a[1] will give e 

[ : ] 
Range Slice - Gives the characters 
from the given range 

a[1:4] will give ell 

in 
Membership - Returns true if a 
character exists in the given string 

H in a will give 1 

not in  
Membership - Returns true if a 
character does not exist in the given 
string 

M not in a will give 1 

% Format - Performs String formatting  

 



#!/usr/bin/python 

 

print "My name is %s and weight is %d kg!" % ('Zara', 21)  

When the above code is executed, it produces the following result: 

My name is Zara and weight is 21 kg! 

Format Symbol Conversion 

%s string conversion via str() prior to formatting 

%i signed decimal integer 

%d signed decimal integer 

%f floating point real number 

 



• Raw strings don't treat the backslash as a special character at all 

#!/usr/bin/python 

 

print 'C:\\nowhere' 

When the above code is executed, it produces the following result: 

C:\nowhere 

Now let's make use of raw string. We would put expression in r'expression' as follows: 

#!/usr/bin/python 

 

print r'C:\\nowhere' 

When the above code is executed, it produces the following result: 

C:\\nowhere 



•      As you can see, Unicode strings use the prefix u, just as raw strings 
use the prefix r. 

 

#!/usr/bin/python 

 

print u'Hello, world!' 

When the above code is executed, it produces the following result: 

Hello, world! 



• A string is a sequence of 
characters 

• A string literal uses quotes  
'Hello' or “Hello” 

• For strings, + means 
“concatenate” 

• When a string contains 
numbers, it is still a string 

• We can convert numbers in a 
string into a number using int() 

>>> str1 = "Hello” 

>>> str2 = 'there' 

>>> bob = str1 + str2 

>>> print bob 

Hellothere 

>>> str3 = '123' 

>>> str3 = str3 + 1 

Traceback (most recent call last):  File 

"<stdin>", line 1, in <module>TypeError: 

cannot concatenate 'str' and 'int' objects 

>>> x = int(str3) + 1 

>>> print x 

124 



• We prefer to read data 
in using strings and 
then parse and convert 
the data as we need 

• This gives us more 
control over error 
situations and/or bad 
user input 

• Raw input numbers 
must be converted from 
strings 

>>> name = raw_input('Enter:') 

Enter:Chuck 

>>> print name 

Chuck 

>>> apple = raw_input('Enter:') 

Enter:100 

>>> x = apple – 10 

Traceback (most recent call last):  File 

"<stdin>", line 1, in <module>TypeError: 

unsupported operand type(s) for -: 'str' 

and 'int' 

>>> x = int(apple) – 10 

>>> print x 

90 



• We can get at any single 
character in a string using an 
index specified in square 
brackets 

• The index value must be an 
integer and starts at zero 

• The index value can be an 
expression that is computed 

>>> fruit = 'banana' 

>>> letter = fruit[1] 

>>> print letter 

a 

>>> n = 3 

>>> w = fruit[n - 1] 

>>> print w 

n 

0 

 b 

1 

 a 

2 

 n 

3 

 a 

4 

 n 

5 

 a 



• You will get a python error if 
you attempt to index beyond 
the end of a string. 

• So be careful when 
constructing index values 
and slices 

>>> zot = 'abc' 

>>> print zot[5] 

Traceback (most recent call last):  File 

"<stdin>", line 1, in 

<module>IndexError: string index out 

of range 

>>>  



• There is a built-in function len 
that gives us the length of a 
string 

>>> fruit = 'banana' 

>>> print len(fruit) 

6 

0 

 b 

1 

 a 

2 

 n  

3 

 a 

4 

 n 

5 

 a 



>>> fruit = 'banana' 

>>> x = len(fruit) 

>>> print x 

6 

len() 

function 
'banana'  

(a string) 

6 

(a number) 

• A function is some stored 
code that we use.  

• A function takes some 
input and produces an 
output. 



def len(inp): 

   blah 

   blah 

   for x in y: 

     blah 

     blah 

• A function is some stored code 
that we use.  

• A function takes some input and 
produces an output. 

>>> fruit = 'banana' 

>>> x = len(fruit) 

>>> print x 

6 

'banana'  

(a string) 

6 

(a number) 



 We can also look at any 
continuous section of a 
string using a colon 
operator 

 The second number is one 
beyond the end of the slice 
- “up to but not including” 

 If the second number is 
beyond the end of the 
string, it stops at the end  

>>> s = 'Monty Python' 

>>> print s[0:4] 

Mont 

>>> print s[6:7] 

P 

>>> print s[6:20] 

Python 

0 

 M 

1 

o 

2 

n 

3 

t 

4 

y 

5 

  

6 

P 

7 

y 

8 

t 

9 

h 

10 

o 

11 

n 



• If we leave off the first 
number or the last number 
of the slice, it is assumed 
to be the beginning or end 
of the string respectively 

>>> s = 'Monty Python' 

>>> print s[:2] 

Mo 

>>> print s[8:] 

thon 

>>> print s[:] 

Monty Python 

0 

M 

1 

o 

2 

n 

3 

t 

4 

y 

5 

  

6 

P 

7 

y 

8 

t 

9 

h 

10 

o 

11 

n 



• When the + operator is 
applied to strings, it means  
"concatenation" 

>>> a = 'Hello' 

>>> b = a + 'There' 

>>> print b 

HelloThere 

>>> c = a + '  ' + 'There' 

>>> print c 

Hello There 

>>>  



• The in keyword can also 
be used to check to see if 
one string is "in" another 
string 

• The in expression is a 
logical expression and 
returns True or False and 
can be used in an if 
statement 

>>> fruit = 'banana’ 

>>> 'n' in fruit 

True 

>>> 'm' in fruit 

False 

>>> 'nan' in fruit 

True 

>>> if 'a' in fruit : 

...     print 'Found it!’ 

... 

Found it! 

>>>  



if word == 'banana': 

    print  'All right, bananas.' 

 

if word < 'banana': 

    print 'Your word,' + word + ', comes before banana.’ 

elif word > 'banana': 

    print 'Your word,' + word + ', comes after banana.’ 

else: 

    print 'All right, bananas.' 



• Python has a number of string functions 
which are in the string library 

• These functions are already built into 
every string - we invoke them by 
appending the function to the string 
variable 

• These functions do not modify the 
original string, instead they return a 
new string that has been altered 

>>> greet = 'Hello Bob‘ 

>>> zap = greet.lower() 

>>> print zap 

hello bob 

>>> print greet 

Hello Bob 

>>> print 'Hi There'.lower() 

hi there 

>>> 



str.capitalize() 

str.title(width[]) 

str.join() 

str.find(sub[, start[, end]]) 

str.replace(old, new[, count]) 

str.lower() 

str.rstrip([chars]) 

str.upper() 



• We use the find() function to 
search for a substring within 
another string 

• find() finds the first occurrence 
of the substring 

• If the substring is not found, 
find() returns -1 

• Remember that string position 
starts at zero 

>>> fruit = 'banana' 

>>> pos = fruit.find('na') 

>>> print pos 

2 

>>> aa = fruit.find('z') 

>>> print aa 

-1 

0 

b 

1 

a 

2 

n 

3 

a 

4 

n 

5 

a 



• You can make a copy of a string in 
lower case or upper case 

• Often when we are searching for a 
string using find() - we first 
convert the string to lower case so 
we can search a string regardless 
of case 

>>> greet = 'Hello Bob' 

>>> nnn = greet.upper() 

>>> print nnn 

HELLO BOB 

>>> www = greet.lower() 

>>> print www 

hello bob 

>>>  



• The replace() function is 
like a “search and 
replace” operation in a 
word processor 

• It replaces all occurrences 
of the search string with 
the replacement string 

>>> greet = 'Hello Bob' 

>>> nstr = greet.replace('Bob','Jane') 

>>> print nstr 

Hello Jane 

>>> nstr = greet.replace('o','X') 

>>> print nstr 

HellX BXb 

>>>  



• Sometimes we want to take a 
string and remove whitespace at 
the beginning and/or end 

• lstrip() and rstrip() to the left 
and right only 

• strip() Removes both begin and 
ending whitespace 

>>> greet = '   Hello Bob  ' 

>>> greet.lstrip() 

'Hello Bob  ' 

>>> greet.rstrip() 

'   Hello Bob' 

>>> greet.strip() 

'Hello Bob' 

>>>  



>>> line = 'Please have a nice day’ 

>>> line.startswith('Please') 

True 

>>> line.startswith('p') 

False 



Data Type Conversion: •         Sometimes, you may need to perform conversions 
between the built-in types. To convert between types, you 
simply use the type name as a function. 

Function Description 

int(x) Converts x to an integer.  

long(x ) Converts x to a long integer 

float(x) Converts x to a floating-point number. 

complex(real ,imag) Creates a complex number. 

str(x) Converts object x to a string representation. 

tuple(s) Converts s to a tuple. 

list(s) Converts s to a list. 

set(s) Converts s to a set. 

dict(d) Creates a dictionary.  

hex(x) Converts an integer to a hexadecimal string. 





REFERENCES 

1. http://www.tutorialspoint.com/index.htm 

2. http://docs.python.org/2/library/stdtypes.html 

3. http://docs.python.org/lib/string-methods.html 

 

 

 

http://www.tutorialspoint.com/index.htm
http://docs.python.org/2/library/stdtypes.html


• Website: 
http://www.math.unipd.it/~hossein/fereidooni.htm 

• E-mail: hossein@math.unipd.it  

• Skype: fereidooni1983 

Contact 


